To find the derivative of cos(2x) using first principles

 To find the derivative of cos(2x) using first principles, we start with the definition of the derivative:


f'(x) = lim h→0 [f(x+h) - f(x)] / h


In this case, f(x) = cos(2x), so we have:


f'(x) = lim h→0 [cos(2(x+h)) - cos(2x)] / h


Next, we use the trigonometric identity:


cos(a+b) = cos(a)cos(b) - sin(a)sin(b)


to rewrite the numerator in terms of cosines and sines:


cos(2(x+h)) - cos(2x) = [cos(2x)cos(2h) - sin(2x)sin(2h)] - cos(2x)


= cos(2x)(cos(2h) - 1) - sin(2x)sin(2h)


= -2sin^2(x)sin^2(h) / h


where we have used the double angle formula for cos(2h) and the identity sin(2x) = 2sin(x)cos(x).


Substituting this expression back into the definition of the derivative, we get:


f'(x) = lim h→0 [-2sin^2(x)sin^2(h) / h] = -2sin^2(x) lim h→0 [sin(h) / h]


We recognize the limit in brackets as the definition of the derivative of sin(x) at x=0, which is equal to 1. Therefore, we have:


f'(x) = -2sin^2(x)


So the derivative of cos(2x) with respect to x, evaluated using first principles, is:


d/dx [cos(2x)] = -2sin^2(x)

Bohr's model of the hydrogen

 Bohr's model of the hydrogen 

Bohr's model of the hydrogen atom is a way to explain how the electrons move around the nucleus of the hydrogen atom. It says that the electrons are in specific energy levels and can jump between these levels by absorbing or emitting energy in the form of light. This model helped explain why atoms emit light in specific colors and is an important part of our understanding of how atoms work.

another way 

Bohr's model of the hydrogen atom is a seminal concept in the field of atomic physics, proposed by Danish physicist Niels Bohr in 1913. The model describes the structure of the hydrogen atom as a positively charged nucleus, consisting of a single proton, surrounded by negatively charged electrons in circular orbits at fixed energy levels.

Bohr's model was a significant development in the understanding of the structure of atoms, as it explained the spectral lines of hydrogen observed in experiments at the time. The model provided a mathematical framework for predicting the wavelengths of light emitted or absorbed by hydrogen atoms when they transition between different energy levels.

However, Bohr's model is limited in its ability to describe the behavior of atoms beyond hydrogen, and was later replaced by more sophisticated quantum mechanical models that can describe the behavior of all types of atoms and molecules. Nonetheless, the principles underlying Bohr's model continue to play a central role in modern atomic physics and quantum mechanics.

bohrs postulates of atomic model 

Bohr's atomic model has three postulates, which are:

Electrons can only occupy certain fixed energy levels or shells.
Electrons can move from one energy level to another by absorbing or emitting a specific amount of energy.
The amount of energy emitted or absorbed when an electron moves between energy levels is equal to the difference in energy between the two levels.
In simpler terms, Bohr's model says that electrons orbit the nucleus in specific energy levels, and that they can move from one level to another by either gaining or losing energy. This explains why atoms only emit or absorb certain colors of light, and helps us understand the behavior of atoms in chemical reactions.

raoults law define and derivation 

Raoult's Law is a law of thermodynamics which describes the relationship between the vapor pressure of an ideal solution and the mole fraction of each component in the solution. The law is named after the French chemist François-Marie Raoult, who first proposed it in 1887.

Raoult's Law is a thermodynamic law that describes the relationship between the vapor pressure of an ideal solution and the mole fraction of each component in the solution. It states that the partial vapor pressure of a component is equal to the product of the vapor pressure of the pure component and its mole fraction in the solution. The law is derived by assuming that the solution is ideal and that the intermolecular forces between the components of the solution and the pure components are the same.


molecular formula

A molecular formula is a representation of a chemical compound that indicates the number and types of atoms present in a molecule. It shows the actual number of each type of atom in the molecule.

For example, the molecular formula for water is H2O, which means that a molecule of water contains two hydrogen atoms and one oxygen atom. Another example is the molecular formula for glucose, which is C6H12O6, indicating that a molecule of glucose contains 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms.

Molecular formulas are important because they provide important information about the chemical composition of a substance, which is essential for predicting its chemical and physical properties.


Chemical equations

A chemical equation is a symbolic representation of a chemical reaction that shows the reactants and products involved in the reaction, as well as the physical states of the substances and the stoichiometric coefficients (or ratios) of the reactants and products.
A chemical equation is a symbolic representation of a chemical reaction that shows the reactants and products involved in the reaction, as well as the physical states of the substances and the stoichiometric coefficients (or ratios) of the reactants and products.
This equation shows that two molecules of hydrogen gas (H2) and one molecule of oxygen gas (O2) react to form two molecules of water (H2O), and that the reactants are gases while the product is a liquid. The stoichiometric coefficients in this equation indicate that two molecules of hydrogen and one molecule of oxygen are needed to form two molecules of water.

Chemical equations are important because they provide a concise way to represent chemical reactions and allow scientists to predict the outcome of a reaction based on the reactants involved.


Gas laws

Gas laws are a set of physical laws that describe the behavior of gases under different conditions, including changes in pressure, temperature, and volume. The most important gas laws include:

Boyle's law: This law states that at a constant temperature, the volume of a gas is inversely proportional to the pressure. Mathematically, this can be expressed as PV = constant, where P is the pressure, V is the volume, and the product of P and V is constant.

Charles's law: This law states that at a constant pressure, the volume of a gas is directly proportional to the absolute temperature. Mathematically, this can be expressed as V/T = constant, where V is the volume, T is the temperature in Kelvin, and the ratio of V and T is constant.

Gay-Lussac's law: This law states that at a constant volume, the pressure of a gas is directly proportional to the absolute temperature. Mathematically, this can be expressed as P/T = constant, where P is the pressure, T is the temperature in Kelvin, and the ratio of P and T is constant.

Combined gas law: This law combines Boyle's, Charles's, and Gay-Lussac's laws to describe the relationship between pressure, volume, and temperature. Mathematically, this can be expressed as PV/T = constant, where P is the pressure, V is the volume, T is the temperature in Kelvin, and the product of P and V divided by T is constant.

These gas laws are important for understanding the behavior of gases in various situations, such as in industrial processes, weather patterns, and the functioning of the human respiratory system.


The ideal gas equation

The ideal gas equation, also known as the general gas equation, is an equation that relates the pressure, volume, temperature, and number of moles of a gas. It is expressed as:

PV = nRT

where:
P = pressure of the gas (in units of pascals, Pa)
V = volume of the gas (in units of cubic meters, m^3)
n = number of moles of gas (in units of moles, mol)
R = the ideal gas constant, which has a value of 8.314 J/(mol·K)
T = temperature of the gas (in units of Kelvin, K)

The ideal gas equation is based on the assumptions that gas molecules are point masses with no volume, and that they do not interact with each other except through elastic collisions. While these assumptions are not true in reality, the ideal gas equation is a useful approximation for many practical purposes.

The ideal gas equation can be rearranged to solve for any of the variables in the equation, depending on what information is known. This equation is commonly used in various fields, such as chemistry, physics, and engineering, to calculate the properties of gases in different situations.
 

what is grahams law of diffusion 

Graham's law of diffusion, also known as Graham's law of effusion, states that the rate of diffusion or effusion of a gas is inversely proportional to the square root of its molar mass.

In other words, gases with lower molar mass will diffuse or effuse faster than gases with higher molar mass. This law is based on the kinetic theory of gases, which states that gases consist of a large number of small particles (atoms or molecules) that are in constant motion and collide with each other.
The mathematical expression of Graham's law is:

Rate of diffusion or effusion ∝ 1/√molecular mass

where the rate of diffusion or effusion is represented by the volume of gas that diffuses or effuses per unit time, and the molecular mass refers to the molar mass of the gas.

Graham's law has important applications in various fields, such as chemistry, physics, and engineering, where the diffusion or effusion of gases is an important factor to consider in the design and optimization of various processes and systems.

The electronic theory of valency 

The electronic theory of valency is a theory that explains how atoms form chemical bonds with each other by sharing, gaining, or losing electrons. An atom's valency is determined by the number of electrons in its outermost shell. Atoms tend to gain, lose, or share electrons to achieve a stable configuration, usually with a complete outer shell of eight electrons. This theory helps explain the formation of ionic and covalent bonds and the concept of oxidation states.


The electronic theory of valency is a theory that explains the chemical bonding and reactivity of atoms in terms of their electronic structure. According to this theory, the valency of an atom is determined by the number of electrons in its outermost shell, known as the valence shell.

The valence electrons of an atom are the electrons involved in chemical bonding and are responsible for forming chemical bonds with other atoms. The electronic theory of valency explains that atoms tend to gain, lose or share electrons in order to achieve a stable electronic configuration, usually by having a complete octet of electrons in their valence shell.


The VSEPR theory

VSEPR (Valence Shell Electron Pair Repulsion) theory is a model used in chemistry to predict the three-dimensional molecular geometry of covalently bonded molecules. The theory is based on the idea that electrons in the valence shell of an atom repel each other and thus determine the shape of the molecule.

According to VSEPR theory, the shape of a molecule is determined by the number of electron pairs (both bonding and nonbonding) surrounding the central atom. These electron pairs try to get as far away from each other as possible to minimize electron-electron repulsion, resulting in a characteristic molecular shape.
The VSEPR theory provides a set of rules to predict the shape of a molecule based on the number of electron pairs around the central atom, which can be summarized as follows:

Start by drawing the Lewis structure of the molecule.
Count the number of electron pairs (both bonding and nonbonding) around the central atom.
Determine the electron pair geometry by assuming that each electron pair occupies a specific region of space and arranging them as far apart as possible.
Determine the molecular geometry by considering only the bonding electron pairs and ignoring the nonbonding pairs.
The VSEPR theory can be used to predict the shapes of a wide variety of molecules, including simple diatomic molecules, triatomic molecules, and more complex molecules with multiple atoms. Understanding the molecular geometry of a molecule is important, as it can influence the molecule's physical and chemical properties, including its reactivity, polarity, and intermolecular forces.


isomerism define 


Isomerism refers to the phenomenon in which two or more chemical compounds have the same molecular formula but different arrangements of atoms within the molecule, resulting in different chemical and physical properties. In other words, isomers are different compounds with the same molecular formula.

There are different types of isomerism, including structural isomerism, stereo isomerism, and tautomeric isomerism, among others. Structural isomers have different arrangements of atoms within the molecule, while stereo isomers have the same arrangement of atoms but differ in their three-dimensional orientation. Tautomeric isomers differ in the placement of a hydrogen atom and a double bond within the molecule.

Isomerism plays an important role in many areas of chemistry, including organic chemistry, biochemistry, and materials science, as it can have a significant impact on the physical and chemical properties of a compound, including its reactivity, stability, and solubility.

in short 

Isomerism refers to the situation where two or more chemical compounds have the same molecular formula but different arrangements of atoms within the molecule, resulting in different properties. There are different types of isomerism, and it is an important concept in chemistry that affects the behavior and properties of chemical compounds.

structural isomerism, stereo isomerism, and tautomeric isomerism   define  

Structural isomerism: This type of isomerism refers to the situation where two or more compounds have the same molecular formula but different bonding arrangements. Structural isomers have different properties because the functional groups are attached in different ways.


Stereoisomerism: Stereoisomers have the same molecular formula and the same bonding arrangements but differ in their spatial arrangement. Stereoisomerism occurs when two or more compounds have the same connectivity of atoms, but they differ in the orientation of their functional groups in three-dimensional space.


Tautomeric isomerism: This type of isomerism involves the rapid interconversion of a pair of isomers through the movement of a proton. Tautomers are compounds that differ in the placement of a hydrogen atom and a double bond within the molecule, and they can exist in equilibrium with each other. Tautomeric isomerism is common in organic chemistry and biochemistry.

in short

Here are brief definitions for the three types of isomerism:

Structural isomerism: Same formula but different bonding arrangements.

Stereoisomerism: Same formula and bonding arrangements but different spatial orientation of functional groups.

Tautomeric isomerism: Rapid interconversion of a pair of isomers through the movement of a proton, resulting in different placement of a hydrogen atom and a double bond.

geometrical isomerism define 

Geometrical isomerism is a type of stereoisomerism in which the relative arrangement of atoms or groups around a double bond, a cyclic ring or an axis of rotation in a molecule is different. In other words, two molecules are geometrical isomers of each other if they have the same molecular formula, the same bonding pattern, but different spatial arrangements due to the restricted rotation around a bond.

Geometrical isomerism can occur in molecules with at least one double bond or a ring structure. In a double bond, the groups attached to the carbon atoms on either side can be oriented in one of two ways, either on the same side of the bond (cis) or on opposite sides of the bond (trans). In a ring structure, the positions of the substituents can be either cis or trans, depending on their relative orientation around the ring.

Geometrical isomerism can have important implications for the physical, chemical and biological properties of a molecule, including its reactivity, stability, and biological activity.

in short 

Geometrical isomerism is a type of stereoisomerism in which molecules have the same molecular formula and bonding pattern, but differ in their spatial arrangement due to restricted rotation around a bond. It can occur in molecules with a double bond or a ring structure and can affect the molecule's physical, chemical, and biological properties.

defenation of optical isomerism and its types 

Optical isomerism, also known as enantiomerism, is a type of stereoisomerism in which molecules have the same molecular formula and bonding pattern, but differ in the way they rotate plane-polarized light. Specifically, optical isomers are molecules that are non-superimposable mirror images of each other.


There are two types of optical isomers: enantiomers and diastereomers. Enantiomers are pairs of molecules that are mirror images of each other and cannot be superimposed, while diastereomers are pairs of molecules that are not mirror images of each other and can have different physical and chemical properties.

Enantiomers have identical physical and chemical properties, except for their ability to rotate plane-polarized light in opposite directions. They are often designated as "R" or "S" enantiomers based on the orientation of the molecule's chiral centers. Diastereomers, on the other hand, have different physical and chemical properties and can have different reactivities and biological activities.

Optical isomerism is important in fields such as organic chemistry, biochemistry, pharmacology, and materials science, as the different properties of enantiomers and diastereomers can have important implications for drug efficacy, toxicity, and stereochemical control in chemical reactions.

in  short 

Optical isomerism is a type of stereoisomerism where molecules have the same molecular formula and bonding pattern, but differ in the way they rotate plane-polarized light. There are two types of optical isomers: enantiomers and diastereomers. Enantiomers are mirror images of each other and have identical properties except for their ability to rotate plane-polarized light in opposite directions, while diastereomers have different properties and can have different reactivities and biological activities. Optical isomerism is important in fields such as chemistry, pharmacology, and materials science.


Lewis structure 

A Lewis structure is a diagram that shows the bonding between atoms in a molecule and the distribution of electrons in the molecule. It is named after Gilbert N. Lewis, who developed the concept in the early 20th century. The Lewis structure is also known as the Lewis dot diagram, Lewis dot structure, or electron dot structure.

In a Lewis structure, the symbol of each atom represents the atomic nucleus and the non-bonding valence electrons, which are shown as dots around the symbol. The bonding electrons are represented by a straight line or a pair of dots between the symbols of the atoms. Each atom is surrounded by its own set of dots, which represent its non-bonding electrons.

The Lewis structure is a useful tool for predicting the geometry, polarity, and reactivity of molecules. It can be used to determine the formal charge of each atom in a molecule, which is useful in predicting the most stable resonance structures. It is also helpful in identifying the presence of multiple bonds, lone pairs, and functional groups in organic molecules.

Overall, the Lewis structure is a simple and effective way of representing the chemical bonds and electron distribution in a molecule, providing important insights into its properties and behavior.

in short 

A Lewis structure is a diagram that shows the bonding between atoms in a molecule and the distribution of electrons in the molecule. It is a useful tool for predicting the geometry, polarity, and reactivity of molecules, as well as identifying the presence of multiple bonds, lone pairs, and functional groups in organic molecules. The Lewis structure is named after Gilbert N. Lewis and is a simple and effective way of representing the chemical bonds and electron distribution in a molecule.

hybridization 

Hybridization is a concept in chemistry that describes the mixing of atomic orbitals to form new hybrid orbitals that are energetically equivalent and have specific spatial orientations. This occurs when atoms in a molecule bond with each other, and the resulting hybrid orbitals are used to form the bonds between the atoms.

The most common type of hybridization is sp3 hybridization, which occurs when a central atom with four valence electrons bonds with four other atoms. In sp3 hybridization, the central atom's s and p orbitals combine to form four new hybrid orbitals, each with a specific spatial orientation that enables it to form bonds with the other atoms.

Other types of hybridization include sp2 hybridization, which occurs when a central atom with three valence electrons bonds with three other atoms, and sp hybridization, which occurs when a central atom with two valence electrons bonds with two other atoms. These different types of hybridization lead to different geometries and shapes of molecules, which have important implications for their physical and chemical properties.
in short 
Hybridization is a process in chemistry where atomic orbitals combine to form new hybrid orbitals that are energetically equivalent and have specific spatial orientations. This process enables the formation of chemical bonds between atoms in a molecule and leads to the creation of different geometries and shapes of molecules, which have important implications for their physical and chemical properties.



zoology exam based question

 

Q  Define simple epithelial tissue , describe structure location and function of different type of simple epithelial tissue .

ans.     Simple epithelial tissue is a type of tissue that is composed of a single layer of cells that are tightly packed together. This tissue can be found lining the cavities and surfaces of the body, where it functions to provide a protective barrier, regulate the exchange of materials between different areas, and secrete or absorb substances as needed. There are three main types of simple epithelial tissue:

Simple squamous epithelium: This tissue is composed of a single layer of flattened cells that are tightly packed together. It is found lining the walls of blood vessels, air sacs in the lungs, and the lining of body cavities. The thin, flat cells of this tissue make it ideal for allowing for rapid diffusion of gases and other small molecules across its surface.

Simple cuboidal epithelium: This tissue is composed of a single layer of cube-shaped cells that are tightly packed together. It is found lining the walls of small ducts and glands, such as those in the kidney and thyroid gland. The cells of this tissue are specialized for secretion and absorption, and their shape allows them to facilitate the movement of substances across the surface.

Simple columnar epithelium: This tissue is composed of a single layer of elongated, column-shaped cells that are tightly packed together. It is found lining the walls of the digestive tract, uterus, and uterine tubes. The cells of this tissue are specialized for absorption and secretion, and they often have microvilli or cilia on their surface to increase their surface area and facilitate movement of materials.
Pseudostratified columnar epithelium: This tissue appears to be composed of multiple layers, but is actually composed of a single layer of elongated cells of varying heights. It is found lining the respiratory tract, where it functions to move mucus and debris out of the airways.

Transitional epithelium: This tissue is found in the urinary system, specifically lining the bladder and ureters. It is capable of stretching and changing shape as the volume of urine in the bladder changes.

Simple ciliated columnar epithelium: This tissue is similar to simple columnar epithelium, but with the addition of cilia on the surface of the cells. It is found lining the respiratory tract, fallopian tubes, and some parts of the brain. The cilia help to move mucus, fluids, or particles across the surface of the tissue.

Overall, simple epithelial tissue is essential for the proper functioning of many parts of the body. It provides a protective barrier, facilitates the exchange of materials, and is involved in secretion and absorption of substances. Different types of simple epithelial tissue have unique structures and functions that allow them to perform specialized tasks in different parts of the body.

Q. Define connective tissue ,structure,  type , function, location . 

ans. Connective tissue is a type of tissue that provides support and structure to the body. It is composed of cells and extracellular matrix, which is made up of fibers and ground substance. The cells of connective tissue are often surrounded by this matrix and secrete it as well.

structure of its 

basically a connective tissue is composed of three components -; cell , fibres and matrix .

The cells of connective tissue can include fibroblasts, chondrocytes, adipocytes, and osteocytes, among others, and they are responsible for secreting and maintaining the extracellular matrix.

The extracellular matrix is made up of a combination of fibers and ground substance, which varies depending on the type of connective tissue. The fibers include collagen, elastin, and reticular fibers, which give the tissue its strength, elasticity, and support. The ground substance is composed of glycosaminoglycans, proteoglycans, and glycoproteins, which provide cushioning and hydration to the tissue.

In loose connective tissue, the fibers and cells are loosely arranged, allowing for movement and diffusion of substances. Dense connective tissue, on the other hand, has densely packed collagen fibers that provide strength and durability. Adipose tissue is composed of adipocytes, which store energy in the form of triglycerides, while cartilage and bone have a matrix that is made up of collagen fibers and other specialized components such as proteoglycans and mineralized calcium.

type of its 

Loose connective tissue: This tissue is composed of loosely arranged fibers and cells. It can be found throughout the body, where it functions to provide support and cushioning to organs, as well as allowing for the movement and diffusion of substances.

a.  Areolar ;-Areolar tissue is a type of connective tissue that is made up of loosely arranged fibers, including collagen and elastic fibers, and a gel-like ground substance. It contains a variety of cell types, including fibroblasts, macrophages, and mast cells. Areolar tissue is found throughout the body and provides support, cushioning, and flexibility to organs and tissues. It also allows for the diffusion and movement of substances, and plays a role in immune function.

b. Adipose ;- Adipose tissue, also known as fat tissue, is a type of connective tissue that is composed of adipocytes, or fat cells, which store energy in the form of triglycerides. Adipose tissue is found throughout the body, but is particularly abundant in subcutaneous tissue and around organs. It provides insulation, cushioning, and protection to organs, as well as serving as a source of energy for the body. Adipose tissue also produces hormones and signaling molecules that play a role in metabolism and inflammation.

Dense connective tissue: This tissue is composed of densely packed collagen fibers, which give it strength and durability. It is found in tendons, ligaments, and the dermis of the skin, where it provides support and stability to these structures.

a. white fibrous tissue ;-White fibrous tissue, also known as dense regular connective tissue, is made up of densely packed collagen fibers that are arranged in parallel bundles. It provides strength, durability, and resistance to stretching, and is found in structures such as tendons, ligaments, and aponeuroses. Tendons connect muscles to bones and transmit forces generated by muscle contraction, while ligaments connect bones to other bones and help stabilize joints. Aponeuroses are flat, sheet-like tendons that attach muscles to other muscles or to bone.

b. yellow elastic tissue ;- Yellow elastic tissue, also known as elastic connective tissue, is made up of elastic fibers that provide elasticity and flexibility to the tissue. It is found in structures such as the lungs, walls of blood vessels, and the vocal cords. The elastic fibers allow these structures to stretch and recoil without tearing, while still maintaining their shape and function.

Cartilage: This tissue is composed of chondrocytes, which are embedded in a matrix of collagen fibers and proteoglycans. It is found in areas such as the nose, ears, and joints, where it provides a smooth surface for movement and shock absorption.

a. Hyaline Cartilage:- Hyaline cartilage is a type of cartilage that is found in the joints, ribcage, and respiratory tract. It is made up of a gel-like matrix of collagen and proteoglycans, which provides cushioning and support to the bones and joints. Hyaline cartilage is also involved in growth and development, as it serves as a template for bone formation during ossification.

b. Elastic Cartilage:-Elastic cartilage is a type of cartilage that is found in the ears, epiglottis, and larynx. It is similar in structure to hyaline cartilage, but contains more elastic fibers, which provide greater elasticity and flexibility to the tissue. This allows the tissue to maintain its shape and function even after repeated bending and stretching.

c. Fibro Cartilage:- Fibrocartilage is a type of cartilage that is found in areas of the body where there is high stress and pressure, such as the intervertebral discs and knee joints. It is composed of a dense network of collagen fibers that are arranged in parallel bundles, which provides strength and durability to the tissue. 

d. Calcified Cartilage:-Calcified cartilage is a type of cartilage that is found in the growth plates of developing bones, as well as in areas where cartilage attaches to bone.

Bone: This tissue is composed of osteocytes, which are embedded in a matrix of collagen fibers and calcium salts. It is found in the skeleton, where it provides support, protection, and allows for movement

a. spongy bone;-Spongy bone, also known as cancellous or trabecular bone, is a porous type of bone tissue that is found at the ends of long bones, in the vertebrae, and in the flat bones of the skull. It is made up of a network of bony spicules, or trabeculae, that form a lattice-like structure.

b. compact bone ;- Compact bone, also known as cortical bone, is a dense type of bone tissue that forms the outer layer of bones and the shafts of long bones. It is made up of tightly packed osteons, which are cylindrical structures that contain layers of bone tissue surrounding a central canal.

Connective tissue has several important functions in the body, 

Providing support and structure: Connective tissue provides support and structure to the body, from the framework of the skeleton to the soft tissue structures that support and protect organs. It provides strength, stability, and shape to the body.

Facilitating movement: Many types of connective tissue are involved in facilitating movement, from tendons and ligaments that connect muscles and bones, to cartilage that provides a smooth surface for joint movement. Connective tissue also helps to absorb shock and distribute forces during movement.

Storing and transporting materials: Adipose tissue stores energy in the form of triglycerides, while bone stores calcium and other minerals. Blood, a type of connective tissue, transports oxygen, nutrients, and other important substances throughout the body.

Providing protection: Connective tissue provides protection to various organs and tissues, such as the skull protecting the brain or the dermis of the skin protecting the internal organs from environmental hazards.

Supporting immune function: Some types of connective tissue, such as lymphoid tissue, contain immune cells that help protect the body from foreign substances and pathogens

लुम्बिनी प्रदेशमा मन्त्री मण्डल बिस्तार

 लुम्बिनी प्रदेशमा मन्त्री मण्डल बिस्तार नवनियुक्त माननिय मन्त्रीज्यु हरुलाई एकमुष्ठ बधाई तथा सफल कार्यकालकाे प्रचण्ड शुभकामना! 🙏



नेपाली व्याकरण पदबर्ग /वर्ण/घोषत्व/ प्राणत्व/

     


क)   नेपाली स्वरवर्ण


अन्य वर्णको सहायता नलिई आफैँ उच्चारण हुनसक्ने ध्वनि स्वर ध्वनि हुन्। श्वासप्रवाहमा कुनै बाधा नभई उच्चारण गर्न सकिन ध्वनि स्वर ध्वनि हुन्। नेपालीमा लेख्य परम्परामा निम्न तेह्र प्रकारका स्वरवर्ण छन् - अ, आ, इ, ई, उ, ऊ, ऋ, ए, ऐ, ओ, औ, अं, अः ।


उच्चारणका हिसाबले नेपाली स्वरवर्ण जम्मा ६ प्रकारका मात्रै छन् – अ, आ, इ, उ, ए, ‌ओ । अतिरिक्त लेख्य चिन्ह ई, ऊ, ऋ, ऐ, औ, अं, अः लेख्य परम्पारामा मात्रै प्रयोग हुन्छन् ।


नेपाली स्वर वर्णलाई उच्चारण गर्दा हुने उच्चारण अवयवको भूमिका अनुसार निम्नजलिखित तरिकाले वर्गीकरण गरिएको पाइन्छ ।


·         मांसपेशीको आधारमा [दृढ स्वर इ  आ उ शिथिल स्वर ए अ ओ]


·         जिब्रोको सक्रिय भाग (अग्र इ ए, केन्द्रीय आ र पश्च उ ओ अ)


·         जिब्रोको उचाइ(उच्च उ इ, उच्च-मध्य ए ओ, निम्न-मध्य अ र निम्न आ)


ख)   नेपाली व्यञ्जनवर्ण

ध्वनिको उच्चारण गर्दा श्वासप्रवाहमा बाधा भएर उच्चारण हुने वर्ण  वर्ण व्यञ्जनवर्ण हुन् । व्यन्जनवर्ण उच्चारण गर्न स्वरको सहायता आवश्यक पर्छ । नेपाली लेख्य परम्परामा छत्तीस प्रकारका व्यन्जनवर्णको प्रयोग भएको पाइन्छ। ती निम्नअनुसार छन् –

क     ख     ग      घ      ङ     

च      छ     ज      झ     ञ

ट      ठ      ड      ढ      ण

त      थ      द      ध      न

प      फ     ब      भ      म

य      र      ल     व

श     ष      स      ह

क्ष     त्र      ज्ञ

यसरी व्यन्जनको जम्मा सङ्ख्या छत्तीस देखिए पनि क्ष, त्र र ज्ञ संयुक्त व्यन्जन हुन् । श,ष र स को उच्चारण ‘स’नै हुन्छ । ञ र ण को पनि अन्य वर्णबाट सम्भव हुन्छ। यसरी उच्चार्य नेपाली व्यन्जन वर्ण निम्न मात्रै छन् –


क     ख     ग      घ      ङ     

च      छ     ज      झ    

ट      ठ      ड      ढ     

त      थ      द      ध      न

प      फ     ब      भ      म

य      र      ल     व

स      ह

नेपाली उच्चार्य परम्पारामा प्रयोगमा नआएका वर्ण लेख्य परम्पारामा र व्याकरणको दृष्टिमा अनिवार्य छन्।


(अ)   उच्चारण स्थानको आधारमा नेपाली व्यञ्जन

उच्चारण गर्दा घाँटीदेखि ओठसम्म सास रोकिने स्थानको आधारमा व्यञ्जनवर्णको उच्चारण हुने स्थान पक्का गरिन्छ । उच्चारण स्थानका आधारमा वर्णको वर्गीकरण निम्न अनुसार देखाइएको छ :

१)     अतिकण्ठ्य (स्वरयन्त्रमुखी)

घाँटीको तल्लो भाग वा श्वासनलीको मुखबाट उच्चारण हुने वर्ण- ह ।

२)     कण्ठ्य (कोमलतालु) ‌

नाक र मुखको प्वाल छुट्टिने ठाउँदखि बाहिरपट्टि तालुको गिलो भाग हुन्छ । यसको ठीक तल जिब्रोको पश्च भाग हुन्छ । त्यही कोमल भागबाट उच्चारण हुने वर्ण – क, ख, ग, घ, ङ ।

३)     तालव्य

कोमलतालुभन्दा बाहिरतर्फ साह्रो र चिल्लो भाग तालु हो । यो स्थानबाट उच्चारण हुने वर्ण : य

४)     वर्त्स्य (दन्तमूलीय)

तालुको चिल्लो भाग सकिएपछि दाँतको फेदसम्मको भागबाट उच्चारण हुने वर्णहरू च, छ, ज, झ, ट, ठ, ड, ढ, न, र, ल, स दन्तमूलीय हुन् ।

५)     दन्य

माथिल्ला दाँतका लहरमा जिब्रोले छोएर उच्चारण हुने वर्ण त, थ, द, ध दन्य हुन् ।

६)     ‌ओष्ठ्य

तल्लो ओठ र माथिल्लो ओठको सक्रियताबाट उच्चारण हुने वर्ण प, फ, ब, भ, म, व ओष्ठ्य हुन् ।

उच्चारण स्थानको आधारमा नेपाली व्यञ्जन                   



(आ)  उच्चारण प्रयत्नका आधारमा नेपाली व्यञ्जन

वर्ण उच्चारण गर्दा उच्चारण हुने स्थान र त्यसलाई छुने अवयव (करण)का कारणले श्वासमा प्रभाव पर्छ। जिब्रो, ओठ आदि गतिशील अङ्गले छोएर श्वासमा प्रभाव हुनु उच्चारण प्रयत्न हो । उच्चारण प्रयत्नका आधारमा वर्णको वर्गीकरण निम्न अनुसार देखाइएको छ :

१)     स्पर्शी

उच्चारण हुने स्थान र त्यसलाई छुने अङ्ग वा करण ट्याप्प जोडिएर सास पूरै रोकिएर उच्चारण हुने वर्ण  स्पर्शी हुन् ।       क    ख     ग     घ           ट     ठ     ड     ढ

                   त    थ     द     ध           प     फ    ब     भ

२)     सङ्घर्षी

उच्चारण अवयव (उच्चारण हुने स्थान र त्यसलाई छुने अङ्ग) हल्कासँग टाँसिएर सुसाउँदै सास बाहिर निस्कने वर्ण सङ्घर्षी हुन् ।  स     ह

३)     स्पर्ष-सङ्घर्षी

पहिले स्पर्श विधिमा जस्तै ट्याप्पै जोडिने र पछि सङ्घर्षीमा जस्तै हल्का टाँसिएर उच्चारण हुने वर्ण स्पर्ष-सङ्घर्षी हुन् ।    च     छ     ज     झ

४)     नासिक्य

यस्ता वर्णको उच्चारणमा नाकबाट सास जान्छ ।      ङ     न    म

५)     कम्पित

सासको जोडले जिब्रो थर्किएर उच्चारण हुन्छ ।       र

६)     पार्श्विक

जिब्रोको उच्चारण स्थानमा छुने तर छेउबाट सास गएर उच्चारण हुन्छ ।       ल

७)     अर्धस्वर

सास नरोकिने वा हलन्त उच्चारण नहुने वर्ण अर्धस्वर हुन् ।    य     व


उच्चारण प्रयत्नका आधारमा नेपाली व्यञ्जन





(इ)   घोषत्वको आधारमा नेपाली व्यञ्जन (स्वरतन्त्रीको अवस्था)

श्वासनलीको मुखमा स्वरचिम्टी वा स्वरयन्त्री हुन्छ । यो मासुको दुई पत्रले बनेको  र खुल्ने बन्द हुने स्वभावको हुन्छ ।यसको आधारमा  वर्णलाई दुई प्रकारले विभाजन गर्न सकिन्छ ।

१)     घोष (सघोष)

स्वरचिम्टी हल्का जोडिएर हावाको जोडले घर्षण हुँदै उच्चारित हुन्छन् ।

ग     ज     ड     द     ब           घ     झ     ढ     ध     भ

ङ     न     म                       य     र     ल     व     ह

२)     अघोष

स्वरचिम्टी निकट रहन्छ । कम्पन वा घर्षण नभई उच्चारण हुन्छन् ।

क    च     ट     त     प           ख     छ     ठ     थ     फ    स

घोषत्वको आधारमा नेपाली व्यञ्जन (स्वरतन्त्रीको अवस्था)




(ई)  प्राणत्वको आधारमा नेपाली व्यञ्जन (सासको मात्रा)

वर्णहरूको उच्चारणमा फोक्सोबाट निस्कने सासको मात्रा  कम र बढी हुनेगर्दछ । यस आधारमा महाप्राण र अल्पप्राण गरेर नेपाली वर्णलाई दुई भागमा विभाजन गरिएको पाइन्छ ।

१)     अल्पप्राण

उच्चारण गर्दा श्वासको शक्ति कम भएमा अल्पप्राण व्यञ्जनवर्ण हुन्छन् ।

क    च     ट     त     प           ग     ज     ड     द     ब

ङ     न     म                       य     र     ल     व

२)     महाप्राण

उच्चारण गर्दा श्वासको शक्ति कम भएमा महाप्राण व्यञ्जनवर्ण हुन्छन् ।

ख     छ     ठ     थ     फ          घ     झ     ढ     ध     भ

स     ह

     

पदबर्ग 

१) नाम :-

क) व्यक्ति, ठाउँ, वस्तु, समूह, भाव (देख्न वा सुन्न नसकिने) गीता, राम, किताब, रूख, चरा, सगरमाथा, नेपाल, हुल, ताँती, मुठी, पाप, धर्म, पढाई, लेखाइ, दुःख.

ख) वाक्यको मुख्य पात्र नै नाम हो।

२) सर्वनाम :-

म, हामी, त, तिमी, तपाईं, हजुर, ऊ, उनी, ती, तिनी, थी, चीनी, उहाँ, आफू


३) क्रिया (क्रियापद) :-

- म भात खान्छु ।

. साथी घर जान्छ ।
क) अन्त्यमा नु" लाउने

खानु, जानु, भन्नु, सुत्नु, उठ्‌नु

ख) हटाउदा वाक्यको अर्थ पुरा नहुने ।

४) विशेषण :-

(नामको बारेमा बताउने

- कति ?, धेरै, कम, थोरै, एक, दुई, पहिलो, दोस्रो

कस्तो? रातो, निलो, गोरो, कालोँ, होचो, अग्लो

- कुन ? कसको कस्को ? यो, त्यो, जन, ने, मेरो, तेरो, उसको


५) क्रियायोगी/ क्रियाविशेषण :-   (क्रियाको बारेमा बताउने ।

- कसरी ? फटाफट, थुचुक्क, राम्ररी, यसरी, त्यसरी

1 कहिले? हिजो, आज, भरे, सधै, जहिल्यै, दिउँसो, बिहान )

कहाँ? त्यहाँ, यहाँ, पछि, अघि, तल, माथि, भित्र, बाहिर

- किन ? पढ़नाले, भएकाले, गरेकीमा, बस्नाले कति? धेरै, थोरै, अलिकति, यति, त्यति

६) नामयोगी - 

पोखरादेखि रात भरि दारभित्र स्कूलतर्क कितावबिना, बोल्नुसट्टा मसँग, घुम्न भन्दा


७) संयोजक:-

- जे, जुन, जे जे, जहिले, जहाँ, जब, तब, र, भने, अनि जब पानी पर्छ तब बाटो हिलो हुन्छ।

८) विस्मयादिबोधक:

हा! हा!, धन्य!, ओहो!, हे!, घत!

९) निंपात :
 ए, नि, क्यारे, हमि, माच्चै, बारे, पो, ल, खै

सप्रसङ्ग व्याख्या लेखन /नैतिक दृिष्टानट/छिमेकी/सिपाही/

  

पाठ; एक 

मूलपाठ. नैतिक दृिष्टानट

यस नैतिक दृष्टान्त (१९७४) कविका रचनाकार कविशिरोमणि लेखनाथ पौड्याल (वि.सं. १९४१ - २०२२, सन् 1885 – 1966) हुन् । उनी नेपाली साहित्यका परिष्कारवादी धारका छन्दोबद्ध कवि थिए । उनलाई नेपाली साहित्यमा आधुनिक युगको जन्मदाता, आध्यात्मिक पुनर्जागरण ल्याउने तथा आध्यात्मिक मानवतावादी कविका रूपमा पनि चिनिन्छ ।


यस कवितामा कवि लेखनाथ पौड्यालले प्रकृति र धर्म/संस्कृतिबाट विविध उदाहरणहरूका साथ नीतिशिक्षा दिएका छन् ।


बडाले जो गर्यो काम हुन्छ त्यो सर्व-संमत ।

छैन शङ्करको नङ्गा, मगन्ते भेष निन्दित ।। १ ।।

गर्दैन ठूलो व्यक्ति मर्यादा-स्थिति-लङ्घन ।

बसेको छ महासिन्धु सीमाबद्ध बनीकन ।। २ ।।

दबिन्छ गुणिको दोष गुणका राशिमा परी ।

रश्मिले चन्द्रको दाग दबाएकै छ बेसरी ।। ३ ।।

कसैको लोकमा छैन एकैनास समुन्नति ।

अरूको के कुरा हेर सन्ध्यामा सूर्यको गति ।। ४ ।।

छोटो बढ्यो भने ज्यादा फूर्ति ढाँचा बढाउँछ ।

उर्लँदो खहरे हेर कत्तिको गड्गडाउँछ ।। ५ ।।

ज्यादा सोझो हुनूभन्दा टेढिनु छ फलाऽधिक ।

गरदैन कुनै सोझो ग्रहको पूजनाऽऽदिक ।। ६ ।।

टपर्टुञ्या पनि हुन्छ मूर्खमध्ये प्रतिष्ठित ।

बोलने को अँध्यारोमा महाऽऽत्मा जुन्किरीसित ।। ७ ।।

सानै देखी छुचो हुन्च दुष्ट मानिसकि मति ।

घोचने जङ्गली काँढा पहिले नै तिखा कति ।। ८ ।।

मिलेर काम गर्नाले हुन्छ अत्यन्त फायदा ।

एकता हेर कस्तो छ मौरीको महमा सदा ।। ९ ।।

जो दिँदैन उही दिन्छु भनी गर्जन्छ सत्त्वर ।

जो हो नवर्षने मेघ उसैको हुन्छ घर्घर ।। १० ।।

हुनुपर्दछ मौकामा शत्रुको पनि सेवक ।

कोइली कागकै बच्चा बन्छ सानू छँदा तक ।। ११ ।।

गुणग्राही जहाँ छैन वहाँ के गरला गुणी ।

कौडीमा तक मिल्कन्छ भिल्लका देशमा मणि ।। १२ ।।

योग्य  स्थानविषे मान सानाले पनि पाउँछ ।

कृष्णाका तटको ढुङ्गा देवता कहलाउँछ ।। १३ ।।

उपकारी गुणी व्यक्ति निहुरन्छ निरन्तर ।

फलेको वृक्षको हाँगो नझुकेको कहाँ छ र ।। १४ ।।

मेटिँदैन कसैबाट आफनू कर्मपद्धति ।

बनवासी बनेर राम चौधै भुवनका पति ।। १५ ।।

धर्म हो धीरको धैर्य राखनू दु:खजालमा 

मानू मौनव्रती हुन्छ कोइली शीतकालमा ।। १६ ।।

सारा सार लिई कन्था छोडी-दिन्छ गुणी जन ।

रस चुसेपछि भृङ्ग फूलमा भुल्दथ्यो किन ? ।। १७ ।।

सङ्गले पनि जाँदैन दुष्टको दुष्टता रिस ।

श्रीखण्डमा बसी सर्प कहाँ हुन्थ्यो र निर्विष ।। १८ ।।

मूर्खका मनमा अर्ती गालीतुल्य बिझाउँछ ।

दूधपान गरी सर्प खालि विष बहाउँछ ।। १९ ।।

मुला भाब ;=  

ठूलाले गरेका कार्यलाई सबैले मान्दछन्, जसरी भगवान् शिवको नाङ्गो र मगन्ते भेष कहीँ निन्दा गरिएको छैन ।

ठूला व्यक्तिहरूले आफ्नो मर्यादा नाघ्न हुँदैन, जसरी ठूलाठूला नदी/समुद्रहरू आफ्ना सीमामै बसेका हुन्छन् ।

गुणी मानिसको थोरै दोष भए पनि दबिन्छ, जसरी चन्द्रमा तेजले उसको दाग छोप्दछ ।

संसारमा कसैको एकैनास उन्नति हुँदैन, अर्थात् उतार-चढाव हुन्छ नै । नत्र साँझमा सूर्यको गति हेर्दा हुन्छ ।

सानो मानिस एकैचोटि बढ्दा फूर्ति बढाउँछ, जसरी उर्लँदो खहरे बेस्सरी गड्गडाउँछ ।

सोझो हुनुभन्दा केही हदसम्म टेढिनु राम्रो हुन्छ । ग्रह सोझो भए कसैले पनि पूजा गर्दैनथे ।

मूर्खमध्ये जस्तोसुकै मूर्ख पनि प्रतिष्ठित हुन्छ । अँध्यारोमा जुनकिरीसँग बोल्न को महात्मा आउँछ ?

दुष्ट मतिका मानिस सानैदेखि छुच्चो हुन्छ, जसरी घोच्ने जङ्गली काँडाहरू पहिले कति तीखा हुन्छन् ।

सँगै मिलेर एकजुट हुनु फाइदाजनक छ, जसरी मौरीले मह पार्दा एकजुट हुन्छ ।

जो काम गर्दैन, उसैले बढी हल्ला गर्छ । त्यसैले त नवर्षिने मेघले नै सधैँ घर्घर गर्छ ।

मौका पर्दा शत्रुको पनि सेवा गर्नुपर्छ, जसरी कोइली सानोमा कागकै बच्चाझैँ हुर्कन्छ ।

गुण नमान्ने ठाउँमा गुणीले के गर्न सक्ला । भिल्लहरूका देशमा मणिजस्तो बहुमूल्य चीज कौडीमा समेत मिल्काइन्छ ।

उचित स्थानमा बस्दा सानाले पनि मान पाउँछ, जसरी कालीगण्डकी नदीका तीरको ढुङ्गा पनि शालिग्राम देवताका रूपमा पुजिन्छ ।

गुणी व्यक्ति सधैँ निहुरिन्छ अर्थात् आफूलाई ठूलो ठान्दैन, जसरी फलसहितको हाँगो झुकेकै हुन्छ ।

आफ्नो भाग्यमा लेखिएको कुरा कसैले मेटाएर मेट्दैन, त्यसैले त चतुर्दश भुवनका स्वामी श्रीराम वनवासमा जानुभयो ।

दुःख पर्दा धैर्य राख्नु धर्म हो, जसरी जाडोयाममा कोइली गाएको सुनिँदैन अर्थात् मौनव्रतमा बसेझैँ हुन्छ ।

गुणीले सार वा भाव मात्र लिन्छ र वस्तुको मोह गर्दैन, किनकि भमराले रस चुसेपछि फूलमै वास बस्दैन ।

दुष्ट मानिस असलका संगतमा रहँदा पनि दुष्ट नै हुन्छ, जसरी श्रीखण्डमा बसे पनि सर्पको विष यथावत् नै हुन्छ ।

मूर्खलाई केही अर्ती दिँदा गाली गरेझैँ लाग्छ । त्यस्तै, दूध खाए पनि सर्प मात्र आफ्नो विष बढाउँछ ।

सप्रसङ्ग व्याख्या गर्नुहोस 

खण्ड क (प्रथम अनुच्छेद)

(क) सप्रसङ्ग व्याख्या गर्दा सबैभन्दा पहिला दिइएको गद्यांश पद्यांश सुरु र अन्त्यका पदावलीका बीचमा थोप्ला चिह्न दिई सुरु गर्ने (समय भएमा पूरै पङ्क्ति सार्ने)

I (ख) सम्बन्धित अंश कुन पाठ्यपुस्तकको कुन पाठको कुन विधाबाट साभार गरिएको हो स्रोत उल्लेख गर्ने ।

(ग) रचनाकार /लेखक / सम्पादकका नाम उल्लेख गर्नुपर्छ । (पाठमा उल्लेख भए) (घ) उक्त अंश कसले कसलाई कुन अवस्थामा भनेको हो, उल्लेख गर्ने । (ङ) दिइएको गद्यांश पद्यांश कुन प्रसङ्गमा आएको हो, खुलाउने ।

व्याख्या खण्ड ख, (दोस्रो अनुच्छेद)


(क) पूर्व प्रसङ्ग गद्यांश पद्यांशको पाठबाट नजिकको सम्बन्ध देखाउनुपर्छ । (ख) विभिन्न तर्क र उदाहरण प्रस्तुत गर्दै उक्त अंशको व्याख्या र विश्लेषणद्वारा भावको पुष्टि गर्नुपर्छ ।

(ग) सारतत्वको पहिचान र पुष्टि गर्नुपर्छ


निष्कर्ष खण्ड ( अन्तिम अनुच्छेद)


(क) मूल व्याख्यामा भनिएको कुराहरुको निचोड दिनुपर्छ ।

(ख) सम्बन्धित अंशमा रहेका भाषाशैली, अलङ्कार, बिम्ब र प्रतीकहरुको जानकारी र महत्व बोध गरी लेख्नुपर्छ।

अभ्यास एक 

उपाकारी गुणी ब्याक्ति  निहुरिन्छ निरन्तर

फालेको बृक्षको हागो नझुकेको काहाँ छ र 

उत्तर;-   यस नैतिक दृष्टान्त (१९७४) कविका रचनाकार कविशिरोमणि लेखनाथ पौड्याल (वि.सं. १९४१ - २०२२, सन् 1885 – 1966) हुन् । उनी नेपाली साहित्यका परिष्कारवादी धारका छन्दोबद्ध कवि थिए । उनलाई नेपाली साहित्यमा आधुनिक युगको जन्मदाता, आध्यात्मिक पुनर्जागरण ल्याउने तथा आध्यात्मिक मानवतावादी कविका रूपमा पनि चिनिन्छ ।यस कवितामा कवि लेखनाथ पौड्यालले प्रकृति र धर्म/संस्कृतिबाट विविध उदाहरणहरूका साथ नीतिशिक्षा दिएका छन् ।   

माथि उल्गुलेखित पग्ति मा गुणी व्यक्ति सधैँ निहुरिन्छ अर्थात् आफूलाई ठूलो ठान्दैन, जसरी फलसहितको हाँगो झुकेकै हुन्छ | गुणी ब्याक्ति सधै गुण ले भरि पूर्ण रहेका ले गर्दा त्यास ब्याक्यी मा  झुकाब सधै रहन्छ |  कबि ले यस कबिता मा मानिस मा हुने बिभिन्न किसिम का नैतिक जिम्मेवारी उल्लेख गरेका छन् |   

कवीले माथि को पग्ति मा ब्याक्ति मा रहेने गुण का कारण ले नै उक्त्त ब्याक्ति त्यो स्थान हासिल  गरेको हुन्छ 

पाठ दुई

छिमेकी 

छिमेकी कथा नेपाली साहित्यकार गुरुप्रसाद मैनालीद्वारा लिखित नेपाली कथा हो। यो कथा मैनालीको नासो कथासङ्ग्रहमा सङ्ग्रहित कथा हो।

समीक्षा
छिमेकी कथा सामाजिक समस्याहरु प्रस्तुत गरी आदर्श समाधान पहिल्याउने आदर्शोन्मुख यथार्थवादी कथाकार गुरुप्रसाद मैनालीको छोटो आकारको प्रभावशाली कथा हो । यसको क्षेत्र गाउँ रहेको छ । छिमेकीहरूको बीचमा स-साना कुरामा असमझदारी भई ठूला-ठूला समस्या उत्पन्न हुने यथार्थलाई यसमा देखाइएको छ ।

भाषा, शैली संवाद
यस छिमेकी कथाका प्रत्येक शब्दहरु सरलता र सहजताले भरिएका छन ।वाक्यहरु छोटा छोटा रहेका छन् । कथामा कतै वर्णन त कतै संवादद्वारा कथा रचिएको छ। वर्णनमा सरलता छ भने संवादमा स्वाभाविकता छ। गुमाने र धनजितेले गाउँले र अशिक्षितले बोल्ने भाषा बोल्दछन्। त्यस्तै आशामरु साहूको संवादमा नेवारी लवज छ। यस कथाको शैली पनि सरल र रैखिक ढाँचामा छ ।कथामा आदि मध्य र अन्त्यको रैखिक शैलीमा बढेको छ। अन्तत: भाषा, संवाद र शैलीका दृष्टिकोणबाट हेर्दा यो कथा सरल, सहज, स्वाभाविक र प्रभावकारी छ।

कथासार

´छिमेकी` कथामा गुमाने र धनजिते दुईजना छिमेकी छन्। असारको समय छ, खेत रोप्ने बेला छ। चौतारामा गाउँलेहरु जम्मा भएका छन्। गुमानेको गोरु धनजितेको खेतको बिउमा पस्छ र धनजितेले गोरुलाई बेस्सरी पिट्दै धपाउँछ । वर्षायामका आफ्ना गोरुलाई बेस्सरी पिटेको देखेपछि गुमाने रिसाउँछ र दुबैका बीचमा झगडा हुन्छ । गाउँको भँडुवा धर्मानन्द पाध्याले गुमानेलाई उक्साउँछ र झगडा हातपातसम्ममा पुग्छ । छिमेकीहरूले गुमाने र धनजितेलाई छुट्याउँछन् तर दुबैमा रिस बाँकी रहन्छ । दुबै छिमेकीहरूमा बोलचाल तथा अर्म-पर्म र असल व्यवहार बन्द हुन्छ । केही समय पछि गाउँमा आँठे रोगको महामारी फैलिन्छ त्यसको चपेटामा धनजिते र उसको परिवार पर्छ । आँठेले इन्तु न चिन्तु भई लडेको धनजितेको दयनीय अवस्था देखेर गुमानेको मन पग्लन्छ । उसले मन लगाएर धनजितेको सेवा गर्छ । सेवा नगर्न र आफ्नो भारी बोक्न गए चलनचल्तीभन्दा धेरै ज्याला दिने लोभ आसामरु साहुले देखाउँछ । यो लोभमा नपरी गुमानेले उल्टै छिमेकीको महत्त्व बुझाउँछ । सन्चो भई बिउँझेपछि धनजितेले गुमानेको प्रेम र उसको मनमा आफूप्रतिको माया र सद्भाव देख्छ ।उसलाई विगतप्रति पछुतो लाग्छ र गुमानेसँग माफी माग्छ । दुबैमा मेल हुन्छ र कथा समाप्त हुन्छ ।

अभ्यास 

छिमेकी लाइ किन जिउदको जन्ती मर्दा को मलामी हो भनिन्छ स-प्रस्नाग व्याख्या गर्नुहोस | 

ALL QUESTION OF CTEVT AND NOTE OF IMPORTANT QUESTION

Cell Injury

2. Common Terminologies used in Cell Injury and Adaptation: Necrosis: Cell death marked by the disintegration of cellular components and ...